Energy Dispersive X-Ray Fluorescence Spectrometer(for all precious metals in gold jewelries) ## DW-EDX3000 ## Excitation Principle DW-EDX3000 uses X-ray beam from X-ray tube to irradiate the sample, and the element atoms will be excited and emit the secondary X-ray fluorescence characteristic for its own energy. Then these elements get identified and its content measured. The working principle is as follows: ## Specifications | Measurement precision | 0.05%(≥96%) | |------------------------------|---| | Analysis range | lppm-99.99% | | Analytical range of elements | More than 60 elements from potassium (K) to uranium (U) | | Measuring object | Powder, solid and liquid | | Measurement time | (60~300)s | | Ambient temperature range | (15-30)t) | | Relative humidity | W70% | | Weight | 30 kg | | Working voltage | AC 110V/220V | | | Single sample chamber | | | Si PIN semiconductor detector | | Configuration | Amplifier circuit | | | High and low voltage power supplies | | | X-ray tube | | | Non-vacuum chamber | #### Characteristic X-radiation of element Each element will emit X-ray at its own energy level when excited. This X-ray is characteristic and called X-ray fluorescence. It is the foundation of analysis. #### Scattering It is the background of spectrum. #### Photoelement The photoelectron is the foundation of detector. In the sample, the X-ray intensity of every element is expressed as 11,12,13,14,15.....respectively. The clement content C is the function of X-ray fluorescence intensity I, expressed as follows: $$C = f$$ (11,12+13+14+15....) This equation is too complicated and can be simplified as: C=K111+K12+K13+K414+K515.... #### Where C is the element content in the sample; 11,12,13,14,15.....arc X-ray intensity of element respectively; K1,K2, K3.K4,K5 are coefficients which can be determined by measuring known standard sample to calibrate. ### Spectrum of recovered Pt | Element | Content(%) | Element | Contenl(%) | |---------|------------|---------|------------| | Cr | 0.001 | Fe | 0.001 | | Ru | 2.011 | Ni | 0.218 | | Rh | 13.25 | Co | 0.011 | | Pd | 10.125 | Cu | 0.207 | | Ag | 0.781 | Zn | 0.221 | | Ir | 3.104 | Au | 2.302 | | Pt | 77.816 | In | 2.011 | | Por. | IA
I H | | | | | The Party of | DIC | | | | | | MEI | | | | | 2 H | |------|--|---|----------------------------------|--|--|---|--|--|--|--|--|---|---|--|----------------------------------|---|--|----------------------| | | LAMO | IIA | | | | | | | | | | <i>₽</i> √ | IIIA | IVA | VA | VIA | VIIA | 4.00 | | 2 | 3 Li
6.94
0.052 | 4 Bc
9.012
0.110 | | | | | | | | | | | | 6 C
12.01
0.282 | 7 N
14:01
0.392 | 8 O
15.99
0.523 | 9 F
18.990
677 | 10N
20.1
0.86 | | 3 | 11Na
22.99
1.041 | 12Mg
24.31
1.254 | | | | | | | | | | | | 1,740 | 15 P
30.97
2.015 | 2,307 | 17Cl
35.45
2.622 | 18 A
39.5
2.95 | | | | | III B IV B V B VI B VIII VIII | | | | | IB | II B | | 1.838 | 2.142 | 2.468 | 2.817 | 3.19 | | | | | 4 | 19 K
30 I
3 3 I 2
3 5 8 9 | 20 Ca
40.08
3.690
4.012
0.341
0.344 | 44.96
4.088
4.459
0.395 | 47.90
4.508
4.931
0.452 | 60.94
4.949
5.427
0.51 | 51.99
5.411
5.947
0.571 | 25Mn
54.94
5.895
6.492
0.636
0.647 | 55.84
6.400
7.059
0.704 | 58.93 | 58.7
7.472
8.265 | 63.54
8.041
8.907
0.928 | 65.38
8.631
9.572
1.009 | 69.72
9.243
10.26
1.096 | 72.5
9.876
10.98
1.186 | 74.92
10.53
11.73
1.282 | 12.50 | 35Br
79.90
11.91
13.29
1.48
1.526 | 83.
12.0 | | 5 | 37 Rb
85,47
13,38
14,97
1,694
1,752 | 1.806 | 88.91
14.93
16.75 | 91.22
13.73
17.69
2.04
2.124
2.02 | 18.65
2.257
2.462 | 19.63
2.03
2.623 | #(99)
18.33
20.65
2.424
2.38
2.792 | 101.0
19.24
21.69
2.558
2.683
2.964 | 102.9
20.17
22.76
2.696
2.834
3.144 | 106.4
21.12
23.86
2.838
2.990 | 107.9
22.10
24.99
2.984
3.151
3.519 | 1112.4
23.11
26.14
3.133
3.316
3.716 | 114.8
24.14
27.38
3.287
3.487
3.92 | 118.6
25.19
28.60
3.444
3.662
4.131 | 29.85
4.347 | 31.13
3.769 | 32.44
3.31
4.220 | 4.42 | | | 137.3 | 56 Ba 1373 32.07 36.55 4.467 4.828 5.531 3.953 | | 178.4 | 180.9
57.11
65.56
8.145
9.341
10.81 | 183.8
58.86
67.59
8.396
9.670 | 186.2
60.66
69.66
8.651
10.01
11.68 | 190.2
62.48
71.78 | 192.2
64.35
73.93
9.173 | 195.0
66.25
76.13
9.441
11.07
12.94 | 197.0
68.19
78.37
9.711
11.44
13.38 | 200.5
70.16
80.66
9.987
11.82
13.82 | 204.3
72.18
82.99
10.27
12.21 | 207.2
74.23
85.36
10.33
12.61
14.76 | 208.9
76.32 | 84 Po
#(209)
78.46
90.24
11.13
13.44
15.74
9.662 | »(2109 | #(22 | | 7 | | 88 Ra
226.0
87.44
100.6
12.34
15.23
17.8
10.60 | An | | | Hall Alk 1: #F | ali Meta
ogen
aline ea
adioac | rth
tive El | ements | dered | oids
es
one by | Main Man N one in | group : | metal
lement | s
mic Ni | ımber | | | | Ln | 57 La
138.9
33.30
37.99
4.651
5.043
5.789
4.124 | 140.1
34.57
39.45
4.840
5.262
6.052 | 140.9
35.86
40.95
5.034
5.489
6.322 | 144.2
37.19
42.48
5.230
5.722
6.602 | 61 Pm
#(147)
38.54
44.05
5.431
5.956
6.891
4.816 | 150.4
39.91
45.65
5.636
6.206
7.180 | 152.0
41.32
47.28
5.846
6.456
7.478 | 157.2
42.76
48.95
6.059
6.714
7.778 | 44.23
6.275 | 162.5
45.73
52.38
6.495
7.249
8.418 | 164.9
47.26
54.16
6.720
7.528
8.748 | 167.2
48.82
55.96
6.948 | 168.9
50.41
57.81
7.181
8.103
9.424 | 173.0
52.04
59.69
7.414
8.401
9.779 | 175.0
53.59
61.61
7.654
8.708
10.14 | |----|--|---|--|---|---|---|---|---|-----------------------------------|--|--|--|--|--|--| | | 3 3
* | (232)
»(232)
»(2,19)
106.1
12.97
16.2
18.98 | #
231.0
94.64
108.9
13.29
16.7
19.55 | #
238.0
97.14
111.8
13.61
17.22
20.16 | 2 3 7 h | #
(244)
102.3
117.7
14.28
18.28
21.40 | # *
(243)
104.9
120.8
14.62
18.83
22.04 | # *
(247)
107.7
123.9
14.96
19.39
22.69 | # * (247) 110.5 127.1 15.31 19.97 | # *
(251)
113,3
130,4
15,66
20,56 | # *
(252)
116.2
133.7
16.02
21.17 | # *
(257)
119.2
137.2
16.38
21.79 | | | |